Вконтакте Facebook Twitter Лента RSS

Заряженных частиц по. Изучение треков заряженных частиц по готовым фотографиям. Движение частицы под углом к вектору магнитного поля

ЛАБОРАТОРНАЯ РАБОТА № 19.

Цель работы: изучить треки заряженных частиц по готовым фотографиям.

Теория: При помощи камеры Вильсона наблюдают и фотографируют треки (следы) движущихся заряженных частиц. Трек частицы представляет собой цепочку из микроскопических капелек воды или спирта, образовавшихся вследствие конденсации пересыщенных паров этих жидкостей на ионах. Ионы же образуются в результате взаимодействия заряженной частицы с атомами и молекулами паров и газов, находящихся в камере.

Рисунок 1.

Пусть частица с зарядом Ze движется со скоростью V на расстоянии r от электрона атома (рис. 1). Вследствие кулоновского взаимодействия с этой частицей электрон получает некоторый импульс в направлении, перпендикулярном к линии движения частицы. Взаимодействие частицы и электрона наиболее эффективно во время прохождения ее по отрезку траектории, ближайшему к электрону и сравнимому с расстоянием r, например равному 2r. Тогда в формуле , где - время за которое частица проходит отрезок траектории 2r,т.е. ,a F - средняя сила взаимодействия частицы и электрона за это время.

Сила F по закону Кулона прямо пропорциональна зарядам частицы (Ze) и электрона (e ) и обратно про­порциональна квадрату расстояния между ними. Следовательно, сила взаимодействия частицы с электроном примерно равна:

(примерно, так как в наших расчетах не учитывалось влияние ядра атома других электронов и атомов среды):

Итак, импульс, полученный электроном, находится в прямой зависимости от заряда проходящей около него частицы и в обратной зависимости от ее скорости.

При некотором достаточно большом импульсе электрон отрывается от атома и последний превращается в ион. На каждой единице пути частицы образуется тем больше ионов

(а следовательно, и капелек жидкости), чем больше заряд частицы и чем меньше ее скорость. Отсюда следуют выводы, которые необходимо знать, чтобы уметь «прочесть» фотографию треков частицы:

1. При прочих одинаковых условиях трек толще у той частицы, которая имеет больший заряд. Например, при одинаковых скоростях трек - частицы толще, чем трек протона и электрона.

2. Если частицы имеют одинаковые заряды, то трек толще у той, которая имеет меньшую скорость, движется медленнее, отсюда очевидно, что к концу движения трек частицы толще, чем вначале, так как скорость частицы уменьшается вследствие потери энергии на ионизацию атомов среды.

3. Исследуя излучение на разных расстояниях от радиоактивного препарата, обнаружили, что ионизи­рующие и другие действия - излучения резко обрываются на некотором характерном для каждого ра­диоактивного вещества расстоянии. Это расстояние называют пробегом частицы. Очевидно, пробег зависит от энергии частицы и плотности среды. Например, в воздухе при температуре 15 0 С и нормальном давлении пробег - частицы, имеющей начальную энергию 4,8 МэВ, равен 3,3 см, а пробег - частицы с начальной энергией 8,8 МэВ - 8,5см. В твердом же теле. например в фотоэмульсии, пробег - частиц с такой энергией равен нескольким десяткам микрометра.



Если камера Вильсона помещена в магнитное поле, то на движущиеся в ней заряженные частицы действует сила Лоренца, которая равна (для случая, когда скорость частицы перпендикулярна линиям поля):

Где Ze - заряд частицы, - скорость и В - индукция магнитного поля. Правило левой руки позволяет показать, что сила Лоренца направлена всегда перпендикулярно скорости частицы и, следовательно, является центростремительной силой:

Где т - масса частицы, r - радиус кривизны ее трека. Отсюда (1).

Если частица имеет скорость, много меньшую скорости света (т.е. частица не релятивистская), то соотношение между кинетической энергией и радиусом ее кривизны имеет вид: (2)

Из полученных формул можно сделать выводы, которые также необходимо использовать для анализа фотографий треков частиц.

1. Радиус кривизны трека зависит от массы, скорости и заряда частицы. Радиус тем меньше (т е. отклонение частицы от прямолинейного движения больше), чем меньше масса и скорость частицы и чем больше ее заряд. Например, в одном и том же магнитном поле при одинаковых начальных скоростях отклонение электрона будет больше отклонения протона, а на фотографии будет видно, что трек электрона - окружность с меньшим радиусом, чем радиус трека протона. Быстрый электрон отклонится меньше, чем медленный. Атом гелия, у которого недостает электрона (ион Не +), отклонится слабее - частицы, так как при одинаковых массах заряд - частицы больше заряда однократно ионизированного атома гелия. Из соотношения между энергией частицы и радиусом кривизны ее трека видно, что отклонение от прямолинейного движения больше в том слу­чае, когда энергия частицы меньше.

2. Так как скорость частицы к концу пробега уменьшается, то уменьшается и радиус кривизны трека(увеличивается отклонение от прямолинейного движения). По изменению радиуса кривизны можно определить направление движения частицы - начало ее движения там, где кривизна трека меньше.

3. Измерив радиус кривизны трека и зная некоторые другие величины, можно для частицы вычислить отношение ее заряда к массе:

Это отношение служит важнейшей характеристикой частицы и позволяет определить, что это за частица, или, как говорят, идентифицировать частицу, т.е. установить ее идентичность (отождествление, подобие) известной частице

Если в камере Вильсона произошла реакция распада ядра атома, то по трекам частиц - продуктов распада можно установить, какое ядро распалось. Для этого нужно вспомнить, что в ядерных реакциях выполняются законы сохранения полного электрического заряда и полного числа нуклонов. Например, в реакции: суммарный заряд частиц, вступающих в реакцию, равен 8(8+0) и заряд частиц-продуктов реакции также равен 8 (4* 2+0). Полное число нуклонов слева равно 17 (16+1) и справа также равно 17 (4 *4+1). Если не было известно, ядро какого элемента распалось, то можно вычислить его заряд с помощью простых арифметических расчетов, а затем по таблице Д.И. Менделеева узнать название элемента. Закон сохранения полного числа нуклонов позволит установить, какому изотопу этого элемента принадлежит ядро. Например, в реакции:

Z = 4 – 1 = 3 и А = 8 – 1 = 7, следовательно - есть изотоп лития.

Приборы и принадлежности: фотографии треков, прозрачная бумага, угольник, циркуль, карандаш.

Порядок проведения работы:

На фотографии (рис. 2) видны треки ядер легкихэлементов (последние 22 см их пробега). Ядра двигались в магнитном поле индукцией В = 2,17 Тл, направленной перпендикулярно фотографии. Начальные скорости всех ядер одинаковы и перпендикулярны линиям поля.

Рисунок 2.

1. Изучение треков заряженных частиц (теоретический материал).

1.1. Определите направление вектора индукции магнитного поля и сделайте пояснительный рисунок, учитывая то, что направление скорости движения частиц определяются по изменению радиуса кривизны трека заряженной частицы (начало ее движения там, где кривизна трека меньше).

1.2. Объясните, почему траектории частиц представляют собой окружности, используя теорию к лабораторной работе.

1.3. Какова причина различия в кривизне траекторий разных ядер и почему кривизна каждой траектории изменяется от начала к концу пробега частицы? Ответить на данные вопросы, используя теорию к лабораторной работе.

2. Изучение треков заряженных частиц по готовым фотографиям (рис. 2.).

2.1. Наложите на фотографию лист прозрачной бумаги (можно использовать кальку) и осторожно переведите на нее трек 1 и правый край фотографии.

2.2. Измерьте радиус кривизны R трека частицы 1 примерно в начале и в конце пробега, для этого нужно сделать следующие построения:

а) из начала трека провести 2 различные хорды;

б) найти середину хорды 1, а затем 2 с помощью циркуля и угольника;

в) затем провести линии через середины отрезков хорд;) ;

в) полученное число будет являться порядковым номером элемента;

г) используя периодическую систему химических элементов, определить, ядром какого элемента является частица III.

3. Сделать вывод о проделанной работе.

4. Ответить на контрольные вопросы.

Контрольные вопросы:

Какому именно ядру – дейтерия или трития – принадлежат треки II и IV(используя для ответа фотографии треков заряженных частиц и соответственно им построения)?

Использование: ядерная техника, а именно разделение заряженных частиц по энергиям, например, на одной из стадий выделения изотопов из их естественной смеси. Сущность изобретения: предварительно осуществляют формирование смеси заряженных частиц путем ионизации, затем производят вытягивание электрическим полем смеси заряженных частиц. После этого проводят разделение заряженных частиц путем воздействия центробежной силой, действующей на заряженные частицы при их движении по дуговой траектории, и электрическим полем, а именно силовыми электрическими барьерами с уменьшающейся высотой каждого барьера в поперечном сечении в соответствии с возрастанием радиусов орбит высокоэнергетических заряженных частиц во время перехода с меньших орбит на большие, при замене одних барьеров другими, или при изменении формы барьеров, или при изменении положения электрических барьеров в зависимости от энергии разделяемых заряженных частиц. Технический результат: повышение селективности при разделении заряженных частиц по энергиям и сокращение расхода материалов на изготовление устройств, реализующих заявляемый способ, путем уменьшения длины зоны разделения заряженных частиц. 3 ил.

Изобретение относится к ядерной технике и предназначено для использования при разделении заряженных частиц по энергиям, например, на одной из стадий выделения изотопов из их естественной смеси. Ранее известные способы разделения заряженных частиц по энергиям разработаны в процессе поиска надежных способов разделения изотопов, способов реализации управляемого ядерного и термоядерного синтеза, способов формирования пучков заряженных частиц в ионно-пучковых и электронно-пучковых устройствах и управления пучками заряженных частиц в ускорительной технике. Известен способ разделения заряженных частиц по энергиям, включающий формирование смеси заряженных частиц путем ионизации, вытягивание электрическим полем смеси заряженных частиц, разделение заряженных частиц путем воздействия непрерывным электрическим полем и центробежной силой и прием разделенных заряженных частиц. Разделение заряженных частиц осуществляют путем воздействия электрической составляющей силы Лоренца непрерывного электростатического поля конденсатора и центробежной силой, действующей на разделяемые заряженные частицы при движении частиц по дуговой траектории [см. , например, А.В. Блинов. Ускорительная масс-спектрометрия космогенных нуклидов / Соросовский общеобразовательный журнал, 1999 г., 8, с. 71-75]. Наиболее близким по технической сущности и достигаемому результату (прототипом) заявляемого изобретения является способ разделения заряженных частиц по энергиям, включающий формирование смеси заряженных частиц путем ионизации, вытягивание электрическим полем смеси заряженных частиц, разделение заряженных частиц путем воздействия непрерывным электрическим полем и центробежной силой и прием разделенных заряженных частиц. Разделение заряженных частиц производят путем воздействия электрической составляющей силы Лоренца непрерывного электрического поля в изогнутом цилиндрическом конденсаторе и центробежной силы, действующей на заряженные частицы при движении частиц по дуговой траектории [см. В.Т. Коган, А.К. Павлов, М.И. Савченко, О. Е. Добычин. Портативный масс-спектрометр для экспресс-анализа растворенных в воде веществ // Приборы и техника эксперимента, 1999, 4, с. 145-149]. Электрическая сила F, действующая на заряженную частицу с электрическим зарядом q, движущуюся со скоростью v в непрерывном электрическом поле напряженностью Е, определяется по формуле

Разделяемые заряженные частицы, имеющие равные массы и равные электрические заряды, двигаются в непрерывном электрическом поле по окружным орбитам, радиусы которых вычисляются из балансов действующих сил. Радиус R 1 орбиты высокоэнергетических заряженных частиц в непрерывном электрическом поле изогнутого конденсатора определяют по формуле:

Где m - масса одной высокоэнергетической или одной низкоэнергетической заряженной частицы,

E 1 - напряженность электрического поля в месте нахождения высокоэнергетической заряженной частицы при полете. Радиус R 2 орбиты низкоэнергетической заряженной частицы в непрерывном электрическом поле изогнутого конденсатора определяют по формуле:

Где m - масса одной низкоэнергетической или одной высокоэнергетической заряженной частицы,

E 2 - напряженность непрерывного электрического поля в месте нахождения низкоэнергетической заряженной частицы при полете. Для прохождения высокоэнергетической заряженной частицы по дуге окружной траектории с радиусом R 1 необходима полоса непрерывного электрического поля, изогнутость которой соответствует радиусу R 1 . Для прохождения низкоэнергетической заряженной частицы по дуге окружной траектории с радиусом R 2 необходима полоса непрерывного электрического поля, изогнутость которой соответствует радиусу R 2 . В итоге ширина изогнутой полосы непрерывного электрического поля должна быть такой, чтобы обе траектории укладывались в пределах непрерывного электрического поля. Разделенные в непрерывном электрическом поле частицы направляют для приема заряженных частиц или на следующую ступень разделения. Общим недостатком описанных способов разделения заряженных частиц по энергиям является низкая селективность разделения вследствие ограниченных возможностей расщепления пучков заряженных частиц в непрерывном электрическом поле. В непрерывном поле одновременно находятся все разделяемые заряженные частицы и поэтому изменением параметров этого поля невозможно избирательно воздействовать на моноэнергетические заряженные частицы. Использование описанных способов разделения заряженных частиц по энергиям в непрерывном электрическом поле не позволяет выполнять следующие операции по управлению траекториями заряженных частиц:

1. Закручивать по круговой орбите только пучок низкоэнергетических заряженных частиц, причем закручивать по такой круговой орбите, когда радиус орбиты низкоэнергетических заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути легких заряженных частиц в электрическом поле, а положением электрического поля в пространстве при достаточной величине электрического поля. Высокоэнергетические заряженные частицы при этом продолжают полет в исходном направлении, т.е. практически по прямолинейной траектории;

2. Закручивать пучки низкоэнергетических и высокоэнергетических заряженных частиц по таким различным круговым орбитам, когда достигнутое расщепление одного пучка на несколько пучков заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц, а положением участков электрического поля при достаточной величине участков электрического поля;

3. Закручивать пучки низкоэнергетических и высокоэнергетических заряженных частиц по такой единой круговой орбите, когда радиус единой орбиты смеси заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц, а положением электрического поля в пространстве при достаточной величине электрического поля;

12. Осуществлять максимальное расщепление пучков заряженных частиц на минимальной длине зоны разделения пучков. Общим недостатком описанных способов разделения заряженных частиц по энергиям также является большая протяженность зоны разделения заряженных частиц из-за медленного расщепления пучков заряженных частиц, приводящая в конечном счете к необходимости изготавливать крупногабаритные устройства для разделения заряженных частиц по энергиям. Сущность изобретения заключается в том, что в способе разделения заряженных частиц по энергиям, включающем формирование смеси заряженных частиц путем ионизации, вытягивание электрическим полем смеси заряженных частиц, разделение заряженных частиц путем воздействия электрическим полем и центробежной силой, действующей на заряженные частицы при их движении по дуговой траектории, и прием разделенных заряженных частиц, разделение заряженных частиц производят путем воздействия силовых электрических барьеров с уменьшающейся высотой каждого барьера в поперечном сечении в соответствии с возрастанием радиусов орбит высокоэнергетических заряженных частиц во время перехода с меньших орбит на большие, при замене одних барьеров другими, или при изменении формы барьеров, или при изменении положения электрических барьеров в зависимости от энергии разделяемых заряженных частиц. Техническим результатом является повышение селективности при разделении заряженных частиц по энергиям и уменьшение длины зоны разделения заряженных частиц, приводящее к снижению размеров устройств для разделения заряженных частиц по энергиям, реализующих заявляемый способ, следовательно, к сокращению расхода материалов на изготовление этих устройств. Повышение селективности при разделении заряженных частиц обеспечивается с помощью силовых электрических барьеров вследствие увеличения возможностей расщепления пучков заряженных частиц, так как способность заряженных частиц преодолеть электрический барьер зависит от их энергии. Изменение параметров электрических барьеров (уменьшение высоты барьера в поперечном сечении в соответствии с возрастанием радиусов орбит высокоэнергетических заряженных частиц во время перехода с меньших орбит на большие) дает возможность избирательно воздействовать на моноэнергетические заряженные частицы и позволяет для сепарации веществ проводить многие ранее невозможные операции по управлению траекториями заряженных частиц во время полета частиц в электрическом поле, а именно:

1. Закручивать по круговой орбите только пучок низкоэнергетических заряженных частиц, причем закручивать по такой круговой орбите, когда радиус орбиты низкоэнергетических заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути легких заряженных частиц в электрическом поле, а положением электрического барьера в пространстве, при достаточной величине электрического барьера. Высокоэнергетические заряженные частицы при этом продолжают полет в исходном направлении, т.е. практически по прямолинейной траектории;

2. Закручивать пучки низкоэнергетических и высокоэнергетических заряженных частиц по таким различным круговым орбитам, когда достигнутое расщепление одного пучка на несколько пучков заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц, а положением расщепленных электрических барьеров при достаточной величине каждого из электрических барьеров;

3. Закручивать пучки низкоэнергетических и высокоэнергетических заряженных частиц по такой единой круговой орбите, когда радиус единой орбиты смеси заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц, а положением электрического барьера в пространстве при достаточной величине электрического барьера;

4. Отпускать пучок высокоэнергетических заряженных частиц с круговой орбиты, общей с орбитой низкоэнергетических заряженных частиц, на первоначально направленную прямолинейную траекторию, оставляя пучок низкоэнергетических заряженных частиц на прежней круговой орбите;

5. Отпускать пучок высокоэнергетических заряженных частиц с круговой орбиты, общей с орбитой низкоэнергетических заряженных частиц, на другую круговую орбиту, оставляя пучок низкоэнергетических заряженных частиц на прежней круговой орбите;

6. Отпускать оба пучка заряженных частиц в любой точке орбиты с единой круговой орбиты на единую прямолинейную траекторию;

7. Отпускать оба пучка заряженных частиц с единой круговой орбиты на различные прямолинейные траектории;

8. Отпускать пучок высокоэнергетических заряженных частиц в любой точке с круговой орбиты, отдельной от орбиты низкоэнергетических заряженных частиц, на прямолинейную траекторию, оставляя пучок низкоэнергетических заряженных частиц на круговой орбите;

9. Отпускать оба пучка заряженных частиц с различных круговых орбит на различные прямолинейные траектории;

10. Отпускать оба пучка заряженных частиц с различных круговых орбит на единую прямолинейную траекторию;

12. Осуществлять максимальное расщепление пучков заряженных частиц на минимальной длине зоны разделения пучков. Уменьшение длины зоны разделения заряженных частиц достигается вследствие того, что предлагаемый способ позволяет производить максимальное расщепление пучков заряженных частиц на минимальной длине. Максимальное расщепление на малой длине зоны разделения получено потому, что уменьшающаяся высота электрического барьера в его поперечном сечении позволяет высокоэнергетическим заряженным частицам пролетать через барьер без изменения своего направления движения и в то же время позволяет барьеру избирательно захватывать и выводить на круговую траекторию только низкоэнергетические частицы. Изобретение поясняется чертежами, где на фиг.1 изображены график зависимости 1 центробежной силы, действующей на заряженные частицы, от радиуса круговой орбиты высокоэнергетических заряженных частиц с равными массами, график зависимости 2 центробежной силы, действующей на заряженные частицы, от радиуса круговой орбиты низкоэнергетических заряженных частиц с равными массами и график зависимости 3 электрической силы Лоренца, действующей на заряженные частицы с равными массами и равными зарядами в электрическом поле, от радиуса круговой орбиты заряженных частиц. На фиг.2 изображен график зависимости 4 центробежной силы, действующей на заряженные частицы, от радиуса круговой орбиты высокоэнергетических заряженных частиц, график зависимости 5 центробежной силы, действующей на заряженные частицы, от радиуса круговой орбиты низкоэнергетических заряженных частиц и график зависимости 6 электрической силы Лоренца, действующей на заряженные частицы с равными массами и равными зарядами в электрическом поле, от радиуса круговой орбиты заряженных частиц с электрическими барьерами 7, 8. На фиг.3 изображен электрический барьер 7 и электрический барьер 8, траектория 9 преодолевших оба барьера 7, 8 высокоэнергетических заряженных частиц, траектория 10 низкоэнергетических заряженных частиц вдоль электрического барьера 7, траектория 11 высокоэнергетических заряженных частиц вдоль электрического барьера 8. Способ разделения заряженных частиц по энергиям осуществляют следующим образом. Предварительно осуществляют формирование смеси заряженных частиц путем ионизации, затем производят вытягивание электрическим полем смеси заряженных частиц, после чего проводят разделение заряженных частиц путем воздействия электрическим полем и центробежной силой. Для разделения заряженных частиц по энергиям используют электрическое поле, имеющее особую топографию. Особенностью топографии электрического поля для разделения заряженных частиц является наличие силовых электрических барьеров. Электрическими барьерами являются повышенные значения напряженности электрического поля в протяженных областях пространства. Разделение заряженных частиц по энергиям производят путем воздействия электрических барьеров электрического поля, изогнутых по дугам круговых орбит заряженных частиц, и центробежной силой, действующей на заряженные частицы при их движении по дуговой траектории. Разделение заряженных частиц осуществляют во время их полета в электрическом поле путем воздействия силовых электрических барьеров с уменьшающейся высотой каждого барьера в поперечном сечении в соответствии с возрастанием радиусов орбит высокоэнергетических заряженных частиц во время перехода с меньших орбит на большие. Разделяемые по энергиям заряженные частицы направляют касательно к вогнутой стороне электрического барьера. Разделение заряженных частиц электрическими барьерами электрического поля производят при определенном взаимном положении электрических барьеров и при определенной форме электрических барьеров. Разделение заряженных частиц по энергиям электрическими барьерами электрического поля производят сменой барьеров, изменением формы барьеров, изменением положения барьеров при последующем сохранении определенного взаимного положения электрических барьеров и определенной формы электрических барьеров. Электрические барьеры электрического поля получают протяженными вдоль траекторий заряженных частиц. Высоту, ширину и длину электрического барьера выбирают достаточными для удержания заряженных частиц на круговой орбите. Заряженные частицы вынуждены перемещаться вдоль тех электрических барьеров, которые оказываются на их пути. Необходимое расщепление одного пучка заряженных частиц на два пучка определяется не только величиной напряженности поперечного электрического поля на пути заряженных частиц, но и положением расщепленных электрических барьеров в пространстве при достаточной величине напряженности электрического поля и величине электрических силовых барьеров и при соответствующих формах электрических силовых барьеров. Форма электрического силового барьера должна быть такой, чтобы к началу схода высокоэнергетических заряженных частиц с круговой орбиты выполнялось условие:

Где R E - радиус изгиба электрического барьера,

M - масса одной высокоэнергетической или одной низкоэнергетической заряженной частицы,

E r - напряженность электрического поля, соответствующая наибольшей высоте электрического барьера. Радиус орбиты смеси заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц, а положением электрического барьера в пространстве при достаточной величине электрического барьера. Для полной реализации возможностей электрических барьеров при корректировке движения частиц по траектории и при разделении N числа заряженных частиц требуется N электрических барьеров электрического поля. Для разделения N числа заряженных частиц можно использовать (N-1) электрических барьеров, но в этом случае пучок наиболее высокоэнергетических заряженных частиц приходится отпустить на прямолинейную траекторию. При этом возможность управления пучками заряженных частиц сохраняется. Для разделения заряженных частиц по энергиям необходимо воздействие электрическим барьером, высота которого уменьшается в радиальном направлении от центра круговой орбиты частицы. Крутизна уменьшения высоты электрического барьера в его поперечном сечении связана с крутизной уменьшения центробежной силы, действующей на частицу большей энергии в момент перехода частицы на большую орбиту. Зависимость высоты электрического барьера в его поперечном сечении от радиуса орбиты заряженной частицы во время перехода заряженной частицы с меньшей орбиты на большую совпадает с зависимостью центробежной силы от радиуса орбиты заряженной частицы во время перехода заряженной частицы с меньшей орбиты на большую. Каждый из расщепленных электрических барьеров имеет по всей длине постоянную высоту при постоянном радиусе изгиба электрического барьера. Для разделения заряженных частиц по энергиям с помощью только одного электрического барьера используют также такой электрический барьер, который имеет по ходу частиц уменьшающуюся вдоль электрического барьера высоту при постоянном радиусе изгиба электрического барьера. Для разделения заряженных частиц по энергиям применяют также электрический барьер, имеющий постоянную высоту по всей длине барьера при уменьшающемся в направлении полета частиц радиусе изгиба электрического барьера. Разделение бинарной смеси заряженных частиц осуществляют с помощью одного протяженного в пространстве электрического барьера. Поперечное сечение электрического барьера на фиг.1 изображено в виде пика зависимости 3 электрической составляющей силы Лоренца от радиуса орбиты заряженных частиц. Сила F, действующая на заряженную частицу с электрическим зарядом q, движущуюся со скоростью v в электрическом поле, зависит от напряженности электрического поля Е. При этом разделяемые по энергиям электрическими барьерами заряженные частицы двигаются следующим образом. В непрерывном электрическом поле при использовании способа-прототипа заряженная частица движется по окружности, радиус которой вычисляется из баланса действующих сил. Но расположив изогнутую по дуге локальную протяженную область электрического поля на пути заряженных частиц и повысив значение напряженности электрического поля по сравнению с расчетной для непрерывного электрического поля, при использовании заявляемого способа создают для заряженной частицы электрический барьер. Сместив в сторону от прямой траектории заряженных частиц начальную область протяженного в пространстве изогнутого электрического барьера, направляют разделяемые заряженные частицы уже не в непрерывное поле, как это делалось в способе-прототипе, а касательно к вогнутой стороне электрического барьера. Расположив вогнутую сторону электрического барьера под углом к прямой траектории полета заряженных частиц, при использовании заявляемого способа создают физические условия, при которых заряженная частица изменит направление своего движения. При подходе разделяемых заряженных частиц к вогнутой стороне высокого электрического барьера заряженные частицы по мере роста напряженности электрического поля меняют направление своего движения и в дальнейшем летят по дуговой траектории вдоль вогнутой стороны электрического барьера. Таким образом, при напряженности электрического поля, заведомо удовлетворяющей неравенству

Все заряженные частицы, имеющие равные массы и равные заряды, будут перемещаться вдоль электрического барьера. Радиус орбиты заряженных частиц в заявляемом способе разделения определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц в электрическом поле, а положением электрического барьера в пространстве при достаточной величине электрического барьера. На фиг.1 показано, что при определенной строго выдержанной форме электрического барьера и при условии, что

Низкоэнергетические заряженные частицы остаются на круговой орбите, а высокоэнергетические частицы сходят с круговой орбиты и следуют по исходной прямолинейной траектории. Радиус орбиты низкоэнергетических заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути легких заряженных частиц в электрическом поле, а положением электрического барьера в пространстве при достаточной величине электрического барьера. Принцип разделения заряженных частиц с помощью двух электрических барьеров поясняется фиг. 2. Поперечное сечение двух электрических барьеров 7, 8 электрического поля изображается в виде чередующихся пиков и провалов на зависимости 6 электрической составляющей силы Лоренца от радиуса R орбиты заряженных частиц. Каждый максимум напряженности Е электрического поля дает максимум электрической составляющей силы Лоренца F=qE для равнозаряженных разделяемых частиц. При разделении заряженных частиц электрическими барьерами для каждого пучка моноэнергетических заряженных частиц имеется свой график зависимости центробежной силы от радиуса мгновенной орбиты. Электрическая сила Лоренца, действующая на разделяемые по энергиям одинаково заряженные частицы, описывается одним общим для всех заряженных частиц графиком 6. Так, на фиг.2 представлен график 6 электрической силы Лоренца, пропорциональной напряженности, при котором на малых орбитах вдоль электрического барьера 7 можно оставить пучок низкоэнергетических и высокоэнергетических заряженных частиц или оставить только пучок низкоэнергетических заряженных частиц. На больших орбитах вдоль электрического барьера 8 можно оставить пучок высокоэнергетических заряженных частиц, или оставить пучок низкоэнергетических заряженных частиц, или оставить оба пучка. При строго выдержанной форме электрического барьера 7 имеются условия, при которых низкоэнергетические заряженные частицы остаются на круговой орбите, а высокоэнергетические частицы сходят с круговой орбиты, расположенной вдоль электрического барьера 7, и следуют по круговой орбите вдоль электрического барьера 8. На фиг. 2 показано распределение двух разделенных заряженных частиц по двум электрическим барьерам 7, 8. При строго выдержанной форме электрического барьера 8 имеются условия, при которых высокоэнергетические заряженные частицы сходят с расположенной вдоль электрического барьера 8 круговой орбиты и следуют по прямолинейной траектории. Условие исхода высокоэнергетических частиц с прежней круговой траектории состоит в соблюдении неравенства (7)

На фиг. 3 пунктиром показаны два электрических барьера 7, 8. Траектории 9, 10, 11 заряженных частиц при разделении частиц по энергиям с помощью двух электрических барьеров 7, 8 показаны на фиг.3 сплошной линией. Траектории орбит 10, 11 заряженных частиц определяются не величиной напряженности электрического поля на пути заряженных частиц, а величиной электрических барьеров 7, 8 и положением электрических барьеров 7, 8 в пространстве при достаточной величине электрических барьеров 7, 8. После разделения заряженных частиц по энергиям осуществляют прием заряженных частиц. В предлагаемом способе, во-первых, непрерывное электрическое поле заменено на электрические барьеры, то есть на систему локальных протяженных изогнутых по траекториям заряженных частиц электрических полей; во-вторых, повышен уровень напряженности электрического поля и, в-третьих, сформирован гребень электрического барьера, удовлетворяющий условию исхода высокоэнергетических частиц с прежней круговой траектории, совместной с траекторией низкоэнергетических заряженных частиц, на другую окружную или прямолинейную траекторию. Важнейшей особенностью способа разделения заряженных частиц по энергиям электрическим барьером является возможность закрутить по круговой орбите только низкоэнергетические заряженные частицы, не изменяя прямолинейную траекторию высокоэнергетических заряженных частиц. Расщепление V пучков заряженных частиц в этом случае максимально и равно:

1. Решение физической проблемы избирательного захвата электрическим полем моноэнергетических заряженных частиц из пучка смеси равнозаряженных частиц. 2. Повышение селективности и уменьшение длины зоны разделения заряженных частиц по энергиям. 3. Создание основы новых исходных данных для теоретических и экспериментальных прикладных задач по применению электрических барьеров во многих областях ядерной физики, электроники и ионной техники. 4. Выполнение параллельного решения экологических проблем по части рационального использования природных ресурсов и проблем разделения веществ в электрических и электромагнитных полях. 5. Осуществление экологически безопасного разделения веществ на основе технологии формирования электрического барьера. Экологические проблемы с применением способа решаются следующим образом:

1. Уменьшаются габариты устройств для разделения заряженных частиц, что позволяет размещать производство на наименьших площадях. 2. Уменьшается количество материалов, затрачиваемых на изготовление малогабаритных устройств для разделения веществ, т.е. рационально используются природные ресурсы.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ разделения заряженных частиц по энергиям, включающий формирование смеси заряженных частиц путем ионизации, вытягивание электрическим полем смеси заряженных частиц, разделение заряженных частиц путем воздействия электрическим полем и центробежной силой, действующей на заряженные частицы при их движении по дуговой траектории, и прием разделенных заряженных частиц, отличающийся тем, что разделение заряженных частиц производят путем воздействия силовых электрических барьеров с уменьшающейся высотой каждого барьера в поперечном сечении в соответствии с возрастанием радиусов орбит высокоэнергетических заряженных частиц во время перехода с меньших орбит на большие, при замене одних барьеров другими, или при изменении формы барьеров, или при изменении положения электрических барьеров в зависимости от энергии разделяемых заряженных частиц.

ЗАРЯЖЕННЫХ ЧАСТИЦ ДВИЖЕНИЕ

ЗАРЯЖЕННЫХ ЧАСТИЦ ДВИЖЕНИЕ

В электрическом и магнитном полях - частиц в пространстве под действием сил этих полей. Ниже рассмотрены движения частиц плазмы, хотя нек-рые положения являются общими и для плазмы твёрдых тел (металлов, полупроводников). Различают следующие основные типы движения заряж. частиц (ДЗЧ): равноускоренное в пост. электрич. , вращательно-поступательное (по спирали) в пост. магн. поле, дрейфовое движение из-за слабой неоднородности магн. поля или под действием др. сил, перпендикулярных магн. полю. В ансамбле заряж. частиц (плазме) с неоднородной концентрацией возникает . В общем виде движение отдельной заряж. частицы описывается ур-нием:

Где r - радиус-вектор частицы, v - скорость, m= -масса, p = mv - импульс, е - заряд, E и H - напряжённости электрич. и магн. полей соответственно. Правая часть (1) - выражение для Лоренца силы. Из (1) следует, что изменение кинетич. энергии E к = mс 2 со временем равняется работе, производимой электрич. полем:

Магн. поле работы не совершает, т. сила перпендикулярна вектору скорости. В случае статич. полей из (2) следует интеграл энергии:

где U (r ) - потенциал электрич. поля E = - nU. Для полей E и Н ,произвольно меняющихся во времени и пространстве, ур-ния (1) не интегрируемы в общем виде; лишь для простых типов полей они интегрируемы точно. Во многих практически важных случаях разработаны приближённые методы решения ур-ний (1) с помощью . В постоянном электрическом поле в нерелятивистском случае (v <g играет величина е E /т; траектория заряда - парабола х= (emE/2p 2 0 )y 2 +const. Ось х выбрана вдоль Е . В случае релятивистского движения траектория представляет собой цепную линию

В неоднородном электростатическом поле ДЗЧ имеет глубокую аналогию с распространением световых лучей в прозрачной преломляющей среде. Для заряда, движущегося в пространстве, в к-ром на некоторой границе имеется скачок потенциала U(x 1 и U (x /a) = U 2 , из (3) следует (при E 0 = 0, v /с<<1) выражение для скоростей:

При прохождении через границу частица испытывает силы, направленной по нормали, а тангенциальная составляющая остаётся неизменной: v 1 sin a= v 2 sin b (a, b - углы падения и "преломления"). Подставляя значения v 1 и v 2 , получаем условие полностью совпадающее с обычной формулировкой закона преломления в оптике. Роль показателя преломления играет квадратный корень из значения потенциала в данной точке. Эта аналогия позволяет использовать методы геом. оптики и служит основой для создания электронной и ионной оптики. В постоянном магнитном поле ДЗЧ можно представить в виде

где w H =-еНс/ E - величина постоянная (магн. поле работы не совершает, поэтому E=const), наз. ларморовской частотой. Интегрируя это ур-ние с учётом (1) и выбирая ось z вдоль Н , получим:

где - радиус окружности (ларморовский радиус), к-рая является проекцией траектории частицы на плоскость, перпендикулярную магн. полю;a=arctg [v y (0)/v x (0)]. Как следует из (4), траектория частицы в пост. магн. поле представляет собой спираль с радиусом r и шагом l = 2pv z / | w H | . В постоянных и однородных электрических и магнитных полях ДЗЧ обладает рядом особенностей. Пост. магн. поле не влияет на характер движения частицы вдоль Н (ось z); в этом направлении частица движется равноускоренно:

В направлении, перпендикулярном магн. полю, ускоренно частицы не происходит. Под воздействием перпендикулярной магн. полю электрич. поля частицы получают пост. скорости , наз. скоростью дрейфа (см. Дрейф заряженных частиц). В системе координат, движущейся с пост. скоростью v д, траектория ДЗЧ в скрещенных электрич. и магн. полях {E z =0, v z (0)=0} также представляет собой ларморовскую окружность. Для нерелятивистской частицы (v <v
д <<с, следовательно В скрещенных малом электрическом и большом магн. полях средняя за оборот частицы сохраняется, т. е. в среднем частица движется по эквипотенциалям электрич. поля. В квазистационарном поперечном электрическом поле наряду с дрейфом v д имеетсядополнит. дрейф со скоростью v и, наз. обычно инерционным, так что полная скорость дрейфа определяется выражением: v д полн = v д +v и, где

Для решения ур-ний (1) в статич. неоднородных полях, в к-рых характерный масштаб неоднородности значительно превышает ларморовский радиус r<R (t)=r (t)-r(t), наз. ведущим центром. Такое наз. дрейфовым, а ур-ние, описывающее плавное перемещение ведущего центра, имеет вид:


Первый член в правой части (5) описывает ДЗЧ вдоль силовой линии, второй - дрейф в скрещенных полях, третий - дрейф из-за неоднородности поля, четвёртый - т. н. центробежный дрейф, связанный с кривизной силовых линий (h n )h =n /R (n - орт нормали, h - орт, параллельный Н , R - радиус кривизны). При движении заряж. частицы сохраняется её магн. момент, наз. первым адиабатич. инвариантом:Сохранение m представляет собой проявление принципа адиабатической инвариантностипри квазипериодич. движении. В произвольной консервативной системе выражение для адиабатич. инварианта имеет вид где предполагается, что по координате q i имеет место квазипериодич. движение. В случае ларморовского вращения (j - вращения). Тогда I 1 , то есть m = const. Если частица колеблется вдоль силовых линий, то в таком движении сохраняется интеграл Выражая v || черезE к и m, получаем наз. обычновторым адиабатич. инвариантом. Для выполнения условий его существования необходимо, чтобы за период одного продольного частицы магн. поле, вдоль силовой линии к-poro движется частица, изменилось мало. Такое изменение может быть вызвано, напр., пространств. неоднородностью магн. поля, приводящей к поперечному дрейфу частицы (во к-рого она переходит с одной силовой линии на другую), а также нестационарностью магн. поля. В последнем случае энергия частицы уже не является интегралом движения, но адиабатич. инвариант I 2 сохраняется в обычном смысле. Открытые ловушки, Магнитные ловушки). Лит.: Спитцер Л., Физика полностью ионизованного газа, пер. с англ., М., 1965; К р о л л Н., Т р а й в е л п и с А., Основы физики плазмы, пер. с англ., М., 1975; Арцимович Л. А., С а г д е е в Р. 3., Физика плазмы для физиков, М., 1979. Е. В . Мишин, В. Н. Ораевский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ЗАРЯЖЕННЫХ ЧАСТИЦ ДВИЖЕНИЕ" в других словарях:

    Движение заряж. частиц внутри монокристалла вдоль каналов, образованных параллельными рядами атомов или плоскостей. К. з. ч. было предсказано М. Т. Робинсоном (М. Т. Robinson) и О. С. Оэном (О. S. Оеп) в 1961 и обнаружено в 1963. Различают… … Физическая энциклопедия

    беспорядочное движение заряженных частиц - Движение заряженных частиц, характеризующееся равной вероятностью любых направлений движения этих частиц в данном элементе объема … Политехнический терминологический толковый словарь

    Движение протонов, электронов и др. заряженных частиц, попавших в монокристалл, вдоль каналов, образованных параллельными рядами атомов или кристаллографич. плоскостями. Предсказано И. Штарком в 1912, обнаружено в 1963 65. Каналированные частицы … Естествознание. Энциклопедический словарь

    В плазме, относительно медленное направленное перемещение заряж. ч ц (эл нов и ионов) под действием разл. причин, налагающихся на осн. движение (закономерное или беспорядочное). Напр., осн. движение заряж. ч цы в однородном магн. поле в… … Физическая энциклопедия

    Устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического поля, способного изменять энергию частиц, обладающих электрическим зарядом. Магнитное… …

    Установки, служащие для ускорения заряж. частиц до высоких энергий. При обычном словоупотреблении ускорителями (У.) наз. установки, рассчитанные на ускорение частиц до энергий более МэВ. На рекордном У. протонов теватроне достигнута энергия 940… … Физическая энциклопедия

    В кристаллах, движение частиц вдоль «каналов», образованных параллельными друг другу рядами атомов. При этом частицы испытывают скользящие столкновения (импульс почти не меняется) с рядами атомов, удерживающих их в этих «каналах» (рис.).… … Большая советская энциклопедия

    Ускорение заряженных частиц в современных ускорителях происходит благодаря взаимодействию заряда частицы с внешним электромагнитным полем (см. Ускорители заряженных частиц). Эффективность ускорения, т. е. средняя энергия, сообщаемая… … Большая советская энциклопедия

    Кристаллах, движение частиц вдоль «каналов», образованных параллельными друг другу рядами атомов. При этом частицы испытывают скользящие столкновения (импульс почти не меняется) с рядами атомов, удерживающих их в этих «каналах» (рис.). Если… … Большая советская энциклопедия

    Медленное (по сравнению с тепловым движением) направленное движение заряженных частиц (электронов, ионов и т. д.) в среде под внешним воздействием, например электрических полей. * * * ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ, медленное (по … Энциклопедический словарь

Книги

  • Статическая и динамическая электронная оптика , Стэррок П. , В довольно обширной учебной литературе по электронной оптике небольшая книга Стэррока занимает особое место. Эта книга не для начинающих. В ней нет элементарных вводных глав; с самого начала… Категория:

Как известно, электрическое поле принято характеризовать величиной силы, с которой оно действует на пробный единичный электрический заряд. Магнитное поле традиционно характеризуют силой, с которой оно действует на проводник с «единичным» током. Однако при его протекании происходит упорядоченное движение заряженных частиц в магнитном поле. Поэтому мы можем определить магнитное поле B в какой-то точке пространства с точки зрения магнитной силы F B , которую поле оказывает на частицу при ее движении в нем со скоростью v.

Общие свойства магнитной силы

Эксперименты, в которых наблюдалось движение заряженных частиц в магнитном поле, дают такие результаты:

  • Величина F B магнитной силы, действующей на частицу пропорциональна заряду q и скорости v частицы.
  • Если движение заряженной частицы в магнитном поле происходит параллельно вектору этого поля, то сила, действующая на нее, равна нулю.
  • Когда вектор скорости частицы составляет любой Угол θ ≠ 0 с магнитным полем, то сила действует в направлении, перпендикулярном к v и B; то есть, F B перпендикулярна плоскости, образованной v и B (см.рис. ниже).
  • Величина и направление F B зависит от скорости частицы и от величины и направления магнитного поля B.
  • Направление силы, действующей на положительный заряд, противоположно направлению такой же силы, действующей на отрицательный заряд, движущийся в ту же сторону.
  • Величина магнитной силы, действующей на движущуюся частицу, пропорциональна sinθ угла θ между векторами v и B.

Сила Лоренца

Мы можем суммировать вышеперечисленные наблюдения путем записи магнитной силы в виде F B = qv х B.

Когда происходит движение заряженной частицы в магнитном поле, сила Лоренца F B при положительном q направлена вдоль векторного произведения v x B. Оно по определению перпендикулярно как v, так и B. Считаем это уравнение рабочим определением магнитного поля в некоторой точке в пространстве. То есть оно определяется в терминах силы, действующей на частицу при ее движении. Таким образом, движение заряженной частицы в магнитном поле кратко можно определить как перемещение под действием этой силы.

Заряд, движущийся со скоростью v в присутствии как электрического поля E, так и магнитного B, испытывает действие как электрической силы qE, так и магнитной qv х В. Полное приложенное к нему воздействие равно F Л = qE + qv х В. Его принято называть так: полная сила Лоренца.

Движение заряженных частиц в однородном магнитном поле

Рассмотрим теперь частный случай положительно заряженной частицы, движущейся в однородном поле, с начальным вектором скорости, перпендикулярным ему. Предположим, что вектор B поля направлен за страницу. Рисунок ниже показывает, что частица движется по кругу в плоскости, перпендикулярной к B.

Движение заряженной частицы в магнитном поле по окружности происходит потому, что магнитная сила F B направлена под прямым углом к v и B и имеет постоянную величину qvB. Поскольку сила отклоняет частицы, направления v и F B изменяются непрерывно, как показано на рисунке. Так как F B всегда направлена к центру окружности, она изменяет только направление v, а не ее величину. Как показано на рисунке, движение положительно заряженной частицы в магнитном поле происходит против часовой стрелки. Если q будет отрицательным, то вращение произойдет по часовой стрелке.

Динамика кругового движения частицы

Какие же параметры характеризуют вышеописанное движение заряженной частицы в магнитном поле? Формулы для их определения мы можем получить, если возьмем предыдущее уравнение и приравняем F B центробежной силе, требуемой для сохранения круговой траектории движения:

То есть радиус окружности пропорционален импульсу mv частицы и обратно пропорционален величине ее заряда и величине магнитного поля. Угловая скорость частицы

Период, с которым происходит движение заряженной частицы в магнитном поле по кругу, равен длине окружности, разделенной на ее линейную скорость:

Эти результаты показывают, что угловая скорость частицы и период кругового движения не зависит от линейной скорости или от радиуса орбиты. Угловую скорость ω часто называют циклотроннойчастотой (круговой), потому что заряженные частицы циркулируют с ней в типе ускорителя под названием циклотрон.

Движение частицы под углом к вектору магнитного поля

Если вектор v скорости частицы образует некоторый произвольный угол по отношению к вектору B, то ее траектория является винтовой линией. Например, если однородное поле будет направлено вдоль оси х, как показано на рисунке ниже, то не существует никакой компоненты магнитной силы F B в этом направлении. В результате составляющая ускорения a x = 0, и х-составляющая скорости движения частицы является постоянной. Однако магнитная сила F B = qv х В вызывает изменение во времени компонентов скорости v y и v z . В результате имеет место движение заряженной частицы в магнитном поле по винтовой линии, ось которой параллельна магнитному полю. Проекция траектории на плоскости yz (если смотреть вдоль оси х) представляет собой круг. Проекции ее на плоскости ху и xz являются синусоидами! Уравнения движения остаются такими же, как и при круговой траектории, при условии, что v заменяется на ν ⊥ = (ν у 2 + ν z 2).

Неоднородное магнитное поле: как в нем движутся частицы

Движение заряженной частицы в магнитном поле, являющемся неоднородным, происходит по сложным траекториям. Так, в поле, величина которого усиливается по краям области его существования и ослабляется в ее середине, как, например, показано на рисунке ниже, частица может колебаться вперед и назад между конечными точками.

Заряженная частица стартует с одного конца винтовой линии, накрученной вдоль силовых линий, и движется вдоль нее, пока не достигнет другого конца, где она поворачивает свой ​​путь обратно. Эта конфигурация известна как "магнитная бутылка", поскольку заряженные частицы могут быть захвачены в нее. Она была использована, чтобы ограничить плазму, газ, состоящий из ионов и электронов. Такая схема плазменного заключения может выполнять ключевую роль в контроле ядерного синтеза, процессе, который представит нам почти бесконечный источник энергии. К сожалению, "магнитная бутылка" имеет свои проблемы. Если в ловушке большое число частиц, столкновения между ними вызывают утечку их из системы.

Как Земля влияет на движение космических частиц

Околоземные пояса Ван Аллена состоят из заряженных частиц (в основном электронов и протонов), окружающих Землю в форме тороидальных областей (см. рис. ниже). Движение заряженной частицы в магнитном поле Земли происходит по по спирали вокруг силовых линий от полюса до полюса, покрывая это расстояние в несколько секунд. Эти частицы идут в основном от Солнца, но некоторые приходят от звезд и других небесных объектов. По этой причине они называются космическимилучами. Большинство их отклоняется магнитным полем Земли и никогда не достигает атмосферы. Тем не менее, некоторые из частиц попадают в ловушку, именно они составляют пояса Ван Аллена. Когда они находятся над полюсами, иногда происходят столкновения их с атомами в атмосфере, в результате чего последние излучают видимый свет. Так возникают красивые Полярные сияния в Северном и Южном полушариях. Они, как правило, происходят в полярных регионах, потому что именно здесь пояса Ван Аллена расположены ближе всего к поверхности Земли.

Иногда, однако, солнечная активность вызывает большее число заряженных частиц, входящих в эти пояса, и значительно искажает нормальные силовые линии магнитного поля, связанные с Землей. В этих ситуациях полярное сияние можно иногда увидеть в более низких широтах.

Селектор скоростей

Во многих экспериментах, в которых происходит движение заряженных частиц в однородном магнитном поле, важно, чтобы все частицы двигались с практически одинаковой скоростью. Это может быть достигнуто путем применения комбинации электрического поля и магнитного поля, ориентированного так, как показано на рисунке ниже. Однородное электрическое поле направлено вертикально вниз (в плоскости страницы), а такое же магнитное поле приложено в направлении, перпендикулярном к электрическому (за страницу).

Для положительного q магнитная сила F B =qv х В направлена вверх, а электрическая сила qE - вниз. Когда величины двух полей выбраны так, что qE = qvB, то частица движется по прямой горизонтальной линии через область поля. Из выражения qE = qvB мы находим, что только частицы, имеющие скорость v=E/B, проходят без отклонения через взаимно перпендикулярные электрическое и магнитное поля. Сила F B , действующая на частицы, движущиеся со скоростью большей, чем v=E/B, оказывается больше электрической, и они отклоняются вверх. Те же из них, которые движутся с меньшей скоростью, отклоняются вниз.

Масс-спектрометр

Этот приборразделяет ионы в соответствии с соотношением их массы к заряду. По одной из версий этого устройства, известного как масс-спектрометр Бэйнбриджа, пучок ионов проходит сначала через селектор скоростей и затем поступает во второе поле B 0 , также однородное и имеющее то же направление, что и поле в селекторе (см. рис. ниже). После входа в него движение заряженной частицы в магнитном поле происходит по полукругу радиуса r перед ударом в фотопластинку Р. Если ионы заряжены положительно, луч отклоняется вверх, как показано на рисунке. Если ионы заряжены отрицательно, луч будет отклоняться вниз. Из выражения для радиуса круговой траектории частицы, мы можем найти отношение m/q

и затем, используя уравнение v=E/B, мы находим, что

Таким образом, мы можем определить m/q путем измерения радиуса кривизны, зная поля величин B, B 0 , и E. На практике, так обычно измеряет массы различных изотопов данного иона, поскольку все они несут один заряд q. Таким образом, отношение масс может быть определено, даже если q неизвестно. Разновидность этого метода была использована Дж. Дж. Томсоном (1856-1940) в 1897 году для измерения отношение е/m е для электронов.

Циклотрон

Он может ускорить заряженные частицы до очень высоких скоростей. И электрические, и магнитные силы играют здесь ключевую роль. Полученные высокоэнергетические частицы используются для бомбардировки атомных ядер, и тем самым производят ядерные реакции, представляющие интерес для исследователей. Ряд больниц использует циклотронное оборудование для получения радиоактивных веществ для диагностики и лечения.

Схематическое изображение циклотрона показан на рис. ниже. Частицы движутся внутри двух полуцилиндрических контейнеров D 1 и D 2, называемых дуантами. Высокочастотная переменная разность потенциалов приложена к дуантам, разделенным зазором, а однородное магнитное поле направлено вдоль оси циклотрона (южный полюс его источника на рис. не показан).

Положительный ион, выпущенный из источника в точке Р вблизи центра устройства в первом дуанте, перемещается по полукруглой траектории (показана пунктирной красной линией на рисунке) и прибывает обратно в щель в момент времени Т / 2, где Т - время одного полного оборота внутри двух дуантов.

Частота приложенной разности потенциалов регулируется таким образом, что полярность дуантов меняется на обратную в тот момент времени, когда ион выходит из одного дуанта. Если приложенная разность потенциалов регулируется таким образом, что в этот момент D 2 получает более низкий электрический потенциал, чем D 1 на величину qΔV, то ион ускоряется в зазоре перед входом в D 2 , и его кинетической энергии увеличивается на величину qΔV. Затем он движется вокруг D 2 по полукруглой траектории большего радиуса (потому что его скорость увеличилась).

Через некоторое время T / 2 он снова поступает в зазор между дуантами. К этому моменту полярность дуантов снова изменяется, и иону дается еще один "удар" через зазор. Движение заряженной частицы в магнитном поле по спирали продолжается, так что при каждом проходе одного дуанта ион получает дополнительную кинетическую энергию, равную qΔV. Когда радиус его траектории становится близким к радиусу дуантов, ион покидает систему через выходную щель. Важно отметить, что работа циклотрона основана на том, что Т не зависит от скорости иона и радиуса круговой траектории. Мы можем получить выражение для кинетической энергии иона, когда он выходит из циклотрона в зависимости от радиуса R дуантов. Мы знаем, что скорость кругового движения частицы - ν = qBR /m. Следовательно, ее кинетическая энергия

Когда энергии ионов в циклотрон превышает около 20 МэВ, в игру вступают релятивистские эффекты. Мы отмечаем, что T увеличивается, и что движущиеся ионы не остаются в фазе с приложенной разностью потенциалов. Некоторые ускорители решают эту проблему, изменяя период прикладываемой разности потенциалов, так что она остается в фазе с движущимися ионами.

Эффект Холла

Когда проводник с током помещается в магнитное поле, то дополнительная разность потенциалов создается в направлении, перпендикулярном к направлению тока и магнитного поля. Это явление, впервые наблюдаемое Эдвином Холлом (1855-1938) в 1879 году, известно как эффектХолла. Он всегда наблюдается, когда происходит движение заряженной частицы в магнитном поле. Это приводит к отклонению носителей заряда на одной стороне проводника в результате магнитной силы, которую они испытывают. Эффект Холла дает информацию о знаке носителей заряда и их плотности, он также может быть использован для измерения величины магнитных полей.

Устройство для наблюдения эффекта Холла состоит из плоского проводника с током I в направлении х, как показано на рисунке ниже.

Однородное поле B приложено в направлении у. Если носителями заряда являются электроны, движущиеся вдоль оси х со скоростью дрейфа v d , то они испытывают направленную вверх (с учетом отрицательного q) магнитную силу F B = qv d х B, отклоняются вверх и накапливаются на верхнем краю плоского проводника, в результате чего появляется избыток положительного заряда на нижнем краю.Это накопление заряда на краях увеличивается до тех пор, пока электрическая сила, появившаяся в результате разделения зарядов, не уравновешивает магнитную силу, действующую на носители. Когда это равновесие будет достигнуто, электроны больше не отклоняются вверх. Чувствительный вольтметр или потенциометр, подключенный к верхней и нижней граням проводника, может измерить разность потенциалов, известную как ЭДС Холла.

Пусть частица массой m и с зарядом e влетает со скоростью v в электрическое поле плоского конденсатора. Длина конденсатора x, напряженность поля равна Е. Смещаясь в электрическом поле вверх, электрон пролетит через конденсатор по криволинейной траектории и вылетит из него, отклонившись от первоначального направления на y. Под действием силы поля, F = eE = ma частица движется ускоренно по вертикали, поэтому . Время движения частицы вдоль оси ох с постоянной скоростью . Тогда . А это есть уравнение параболы. Т.о. заряженная частица движется в электрическом поле по параболе.

3. Движение заряженных частиц в магнитном поле .

Рассмотрим движение заряженной частицы в магнитном поле напряженностью Н. Силовые линии поля изображены точками и направлены перпендикулярно к плоскости рисунка (к нам).

Движущаяся заряженная частица представляет собой электрический ток. Поэтому магнитное поле отклоняет частицу вверх от ее первоначального направления движения (направление движения электрона противоположно направлению тока)

Согласно формуле Ампера сила, отклоняющая частицу на любом участке траектории равна , ток , где t - время, за которое заряд e проходит по участку l. Поэтому . Учитывая, что , получим

Сила F называется лоренцевой силой. Направления F, v и H взаимно перпендикулярны. Направление F можно определить по правилу левой руки.

Будучи перпендикулярна скорости , лоренцева сила изменяет только направление скорости движения частицы, не изменяя величины этой скорости. Отсюда следует, что:

1. Работа силы Лоренца равна нулю, т.е. постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей (не изменяет кинетической энергии частицы).

Напомним, что в отличие от магнитного поля электрическое поле изменяет энергию и величину скорости движущейся частицы.

2. Траектория частицы является окружностью, на которой частицу удерживает лоренцева сила, играющая роль центростремительной силы.

Радиус r этой окружности определим, приравнивая между собой лоренцеву и центростремительную силы:

Откуда .

Т.о. радиус окружности, по которой движется частица, пропорционален скорости частицы и обратно пропорционален напряженности магнитного поля.

Период обращения частицы T равен отношению длины окружности S к скорости частицы v: . Учитывая выражение для r, получим . Следовательно, период обращения частицы в магнитном поле не зависит от ее скорости.

Если в пространстве, где движется заряженная частица, создать магнитное поле, направленное под углом к ее скорости , то дальнейшее движение частицы представит собой геометрическую сумму двух одновременных движений: вращения по окружности со скоростью в плоскости, перпендикулярной силовым линиям, и перемещения вдоль поля со скоростью . Очевидно, что результирующая траектория частицы окажется винтовой линией.

4. Электромагнитные счетчики скорости крови.

Принцип действия электромагнитного счетчика основан на движении электрических зарядов в магнитном поле. В крови имеется значительное количество электрических зарядов в виде ионов.

Предположим, что некоторое количество однозарядных ионов движется внутри артерии со скоростью . Если артерию поместить между полюсами магнита, ионы будут двигаться в магнитном поле.

Для направлений и B, показанных на рис.1., магнитная сила , действующая на положительно заряженные ионы направлена вверх, а сила , действующая на отрицательно заряженные ионы, направлена вниз. Под влиянием этих сил ионы движутся к противоположным стенкам артерии. Эта поляризация артериальных ионов создает поле E (рис.2), эквивалентное однородному полю плоского конденсатора. Тогда разность потенциалов в артерии U диаметром d связан с Е формулой . Это электрическое поле, действуя на ионы, создает электрические силы и , направление которых противоположно направлению и , как показано на рис.2.

© 2024 Строительный портал - PvaStudio